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Earlier papers have described a technique whereby a stratified shear flow may 
be produced under controlled conditions in the laboratory. A comparison between 
the experiments and theory is made here for small-amplitude unstable dis- 
turbances in an accelerating stratified free shear layer at  the diffuse interface 
between layers of brine and water. In the early stages of the observed growth of 
the instability, which takes the form of growing waves, three measurable 
quantities can be compared with predicted values: the wavelength of the small 
amplitude waves, the time, which determines the flow conditions, and the growth 
rates of the waves. Some observations of the development of the disturbances 
to finite amplitude, the transition td turbulence and the resulting turbulence are 
reported. 

1. Introduction 
The study of the instability of stratified shear flows and the resulting turbulence 

is one of increasing practical and scientific importance. Shear instability has 
been identified as the cause of regular arrays of spiral rolls which are observed 
to form in the Mediterranean thermocline in association with internal waves 
(Woods 1968). In  the atmosphere there is increasing evidence (see for example 
Browning & Watkins 1970) that such an instability is a main cause of clear-air 
turbulence above the troposphere and much effort is being made to predict and 
detect it. It seems probable that, as instruments are developedwhich can detect 
finer detail than has previously been possible, the occurrence of shear instability 
may be found to be widespread in the ocean and the atmosphere, in planetary 
atmospheres and in the solar photosphere, and it may prove to be a major 
limiting condition on large-scale currents. 

We have already described a technique to produce a stratified shear flow in 
the laboratory. It was introduced in a paper published in 1968 (hereafter referred 
to as I), and in 1969 the development of instability at the interface between 
two immiscible fluids in shear flow was described (Thorpe 1969a, here referred 
to as 11). Some preliminary results of an investigation of the instability a t  a 
diffuse interface between two miscible fluids in shear flow have been published 
(Thorpe 1969b, here referred to as 111), and this study is now described in detail. 

The majority of previous experiments on stratified shear flow instability have 
not provided suitably controlled conditions at  the onset of instability. An 
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exception is the wind-tunnel experiment by Scotti & Corcos (1969). In this the 
initial spatial growth of waves was measured for very small wave slopes, much 
less than 0.1. The present experiments made with water and brine follow the 
development of instability up to large amplitudes and through a transition into 
turbulence. The qualitative details of this transition were the main subject of 111. 

The experiments are made in a long horizontal tube with almost square 
cross-section having perspex (plexiglass) sides and closed ends. It is completely 
filled with two layers of fluid - the upper water and the lower brine - which is 
usually coloured with dye so as to make it distinguishable from the water. (A 
few experiments with more than two layers are reported in $ 3.) The density 
profile is varied by allowing diffusion to occur for different lengths of time. 
When the tube is suddenly tilted through a small angle, 8, a uniformly 
accelerating shear flow is initiated in the centre of the tube and this becomes 
unstable after a few seconds. The growth of instabilities is shown in figure 1 
(plate l),  and is recorded by cameras in the experiments. The analysis and inter- 
pretation of the data collected in this way is the subject of this paper. 

The theoretical background is discussed in 5 2 .  The nature of the accelerating 
flow can be predicted from a knowledge of the initial density profile, as was 
shown in I. The problem of extending Squire’s theorem to an accelerating flow 
is considered, and use is made of a quasi-steady approximation to estimate the 
rate of growth of disturbances. This approximation has already been used and 
tested against an exact solution for immiscible fluids in 11. Some numerical 
studies of steady inviscid flows with error function and hyperbolic tangent 
function density and velocity profiles have been made (Hazel 1970) and the& 
are reviewed in $ 2.4 and, in $2.5, are applied to predict the way in which dia- 
turbances will grow in the accelerating flow of the experiments. The presence 
of viscosity reduces the velocity gradients in the shear region at the diffuse 
interface between the water and brine and this can be accounted for, but not 
enough is yet known about the effect which viscosity has upon the growth rates 
of the unstable disturbances. There is, however, evidence from the experiments 
and the theory of homogeneous free shear layers that, a t  the Reynolds numbers 
appropriate to the present experiments, the effect of viscosity is not very great. 

The experiments are described and the results compared with theoretical 
predictions in $3 .  The amall-amplitude inviscid theory appears to predict some 
features of the growth of the disturbances quite well, even though the disturbance 
amplitude is appreciable at  the earliest times a t  which it can be measured. In  
particular the orientation and wavelength of the disturbances are well estimated. 
There is considerable scatter in the observed growth rates which are mostly less 
than those predicted. The initial ‘noise level’ in the tube is unknown and, as was 
found in 11, this produces some difficulties in the interpretation of the results. 
The growth of the disturbances is described in $ 3 . 3  up to the onset of small- 
scale irregularities in the flow, and some features of the developing turbulent 
flow are reported in $ 3.4. 
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We consider the motion of a stably stratified fluid from a state of rest between 
parallel planes, z = & $H, inclined at an angle 8 to the horizontal. The effect 
of the lateral walls will be ignored and the x axis is taken parallel to the planes 
up the line of greatest slope, and the z axis upwards (as in figure 1 in I). The 
density of the fluid, p, is supposed to depend on co-ordinate z alone when the 
fluid is initially at  rest. In  the accelerating flow which ensues, the velocity 
(u, 0,O) is parallel to the boundaries and, as was shown in I, 

if viscosity can be neglected. (The effect of viscosity will be examined in 0 2.6.)  
If p = po(l - Af(z)), where po, A are constants, A < 1 and f ( z )  = -f( -2) is of 
order unity, then approximately 

(2) 
in the accelerating flow. 

In the experiments, the density profile is produced by allowing diffusion to 
occur for a time r across an initially sharp interface separating two homogeneous 
layers of brine and water of equal depth. The resulting density distribution in. the 

u = gAj(z) t sin 0 

tube is 
p = po[l - A  erf ( z / ~ ( K T ) * ) ] ,  (3) 

provided that H / ~ ( K T ) ~  1-that is, diffusion from the parallel planes is 
negligible-and where initially the upper fluid (water) has uniform density 
po( 1 - A) and the lower fluid (brine) has a uniform density po( 1 + A), and K is 
the molecular diffusivity of salt in water. 

If A < 1 and t < r ,  the resulting velocity distribution at  a time t after the tube 
has been tilted is approximately 

u = gA erf ( Z / ~ ( K T ) + )  t sin 8. (4) 

This, and its derivatives, provide a good approximation in the experiments, 
in which A < 0.09, t/r < 0.01. 

2.2.  The disturbed$ow 

For a steady two-dimensional inviscid shear flow Yih (1955) has extended Squire's 
theorem and has shown that for each infinitesimal three-dimensional wave 
making an angle q5 with the basic flow, there is an infinitesimal two-dimensional 
wave having the same growth rate but with characteristic Richardson number 
increased by a factor [l/cos2 $1. In  the study of two-dimensional disturbances 
to stratified shear flows it is usually found that an increase in Richardson number 
reduces the growth rate of unstable waves and, in these flows, the most unstable 
wave disturbances will therefore be two-dimensional. The inverse relation be- 
tween Richardson number and growth rate is expected intuitively since an 
increw in Richardson number represents an increase in static stability arising 
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from buoyancy forces in the increased density gradients, but such a relation 
does not always hold true. Thorpe ( 1 9 6 9 ~ )  has found a flow which is destabilized 
by the presence of (statically stable) density gradients, and Miles (1963, see 
figure 2) has found a flow which (for wave-numbers between 1 and 2) becomes 
unstable as the characteristic Richardson number is increased. It does not 
follow therefore that two-dimensional disturbances are always the most unstable, 
and some caution is needed. It has been found, however, that in a few experiments 
we have made in which instability has been observed to develop on a s t eady  flow 
with error function profiles (profiles given by (2) and (3) but with t having a 
constant value) the disturbance has a two-dimensional nature when it is of 
sufficient amplitude to be observed (wave slopes of about 0.01; see figure 2 of 
111) and the two-dimensional character continues until the disturbance is very 
large. The two-dimensional nature of the small amplitude disturbances is 
expected since, for the appropriate density and velocity profiles, the growth rates 
decrease with increased characteristic Richardson number (Hazel 1970; see S 2.4 
below), but the ensuing two-dimensional flow at large wave-amplitude has not 
been predicted and deserves study. Drazin's (1970) study of finite-amplitude 
disturbances when the flow is just unstable is not applicable to the present ex- 
periments for, as will be seen, the instability is first observed when the Richardson 
number, which providm the criterion for instability, is well below critical. 

We now consider the nature of a disturbance in the accelerating flow produced 
in the experiments, and suppose that a space-wise periodic disturbance to the 
accelerating flow given by (2) is directed a t  an angle Q to the x axis. Let us now 
take new axes (a!, y', x ) ,  where d is in the direction of the disturbance and so no 
variation of phase of the disturbance occurs in the y' direction. If 

[u (z ,  t ) ,  v(z, t ) ,  w(z, t)] eiks' 

is the disturbance velocity measured in these new co-ordinates, and p' eikz' and 
p' eikx' the disturbed density and pressure respectively, the linearized equations 
of motion become 

aU 1 gP' 
- + ftgA sin 8 cos Qiku + wtgA sin 6' cos Qf' = - - ikp' - -sin 8 COS 4, 
at Po Po 

(5) 

( 6 )  
av gP' - + ftgA sin 8 cos Q ikv + wtgA sin 8 sin Qf' = - - sin B sin Q, 
at Po 

gp' COSe; aw 
-++ftgAsinOcos$ikw = ----- 
at Po Po 

(7) 

!!!? at + ftgA sin 8 cos q5 ikp' + wApof' = 0, (8) 

aW 
iku+- = 0, a x  (9) 

where the Boussinesq approximation has been made, f' = df/dz, k is the wave- 
number, and viscosity and molecular diffusivity are neglected. 

For small values of 8, cos8 is approximately unity and ( 5 ) ,  (7), (8) and (9) 
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depend on sin6 only. They are identical to the set of equations for a two- 
dimensional disturbancet in a fluid with the same density profile but contained 
in a tube tilted through a smaller angle, 6cosq5. The behaviour of three- 
dimensional disturbances can thus be modelled by two-dimensional ones. More- 
over, if the fluid is such that a two-dimensional disturbance will grow by a given 
factor (say 100 times its initial amplitude) more rapidly as the angle of tilt is 
increased, then of all the disturbances which can occur the first to grow by this 
factor will be two-dimensional. An example of this property was found in 11. 
When a tube containing two immiscible fluids was tilted it was found that the 
time taken for a two-dimensional disturbance to increase its amplitude by a. 
given factor was reduced if the angle of tilt was increased. If initially all the 
possible disturbances had the same amplitude independent of their orientation, 
then two-dimensional disturbances would subsequently be the largest in the 
unstable motion. (The result was proved in that case for all angles of tilt.) We 
shall consider in $2.5 whether fluids with density profiles of the form (3) con- 
sidered here have the property. It is, however, plausible that they may, since 
the Richardson number of the flow (see I) is 

(10) 
cos 6 - cos O(~KT)* exp ( - Z 2 / 4 K 7 )  R. = 

a N2t2sin26 - Agt2 sin2 6 

(where N is the Brunt-Vaisdilil frequency), and this is increased as 6 decreases 
at given times t and r and at each position x .  

When 6 is not small, a term cos 6 appears in (7) and the equations are no longer 
equivalent to those of a two-dimensional disturbance. In  the experiments the 
angle of tilt is small (less than 11'). 

2.3. The quasi-steady approximation 

We shall call the quasi-steady approximation that in which the growth rate of 
an unstable disturbance at a given time t in the accelerating flow is supposed to 
be the same as it would be in a steady flow, with the same distribution of density 
andvelocity as the accelerating flow has at  that instant of time. In the investigation 
I1 of the instability of two immiscible fluids in shear flow it was shown by direct 
comparison between an exact solution and that developed on the basis of a 
quasi-steady approximation that the latter was a very good approximation. 
The time at which a two-dimensional disturbance would have increased its 
amplitude by a given proportion was well predicted and the growth rates were 
also well predicted except when growth first occurred. In  general, the approxima- 
tion will be valid provided that the disturbances are small (the maximum slope 
of lines of constant density must be small) and the rate of change of the accelerat- 
ing flow ([au/at]/u = l / t )  'is much less than the growth rate of the disturbance 
given by the quasi-steady approximation. This approximation will not therefore 
be valid when it predicts very small growth rates-that is, near conditions of 
marginal stability for a steady flow. Fortunately the experiments are such that 
we are not concerned with this region, but rather that in which the steady-flow 

t By a two-dimensional disturbance we mean one in which the wave-number is directed 
in the direction of flow. 
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theory predicts unstable conditions with large growth rates, and the quasi- 
steady approximation appears to be justified. We shall therefore consider the 
results available from the theories of the instability of steady shear flows. 

2.4. Solutionsfor steady JEows 

The literature on the instability of steady stratified shear flows is extensive and 
we shall not attempt to survey it here. Drazin & Howard (1966) have recently 
reviewed the subject. The main results stem from solutions of the Taylor- 
Goldstein equation (Thorpe 1969 c )  . Numerical solutions have recently been 
obtained for a variety of density and steady velocity profiles by Mr Philip Hazel 
of Cambridge University (Hazel 1970) and I am indebted to him for examining 

0.15 
J 

0.05 

0.2 0.4 0.6 0.8 1 -0 
a 

FIGURE 2. The neutral curve for density and velocity profiles of equation (11) (full line), 
the curve of maximum growth rate (dashed), and the curve J = a( 1 -a).  

some particular profiles which are relevant to the experiments. Figure 2 shows 
the neutral curve (a, J) for the non-dimensional profiles 

u = P(x), p = 1 - (J /g )  F(z)  (P(z)  = erf (zn4/2)) (11) 

in an infinite fluid, and the curve of the maximum growth rate in the unstable 
region. J is defined as the minimum Richardson number, which occurs at z = 0 
and a is the wave-number of the disturbance. The waves which grow most 
rapidly have wave-numbers below the wave-number which first becomes un- 
stable as the Richardson number decreases. All the eigensolutions found were 
stationary. Table 1 shows the non-dimensional growth rates of unstable dis- 
turbances of wave-numbers a = 0.40, 0-44. Also shown in figure 2 is the neutral 
curve for F(z)  = tanh x found by Holmboe (1962; J = a( 1 -a)). The two neutral 
curves are very similar except near a = 1. The growth rates were also found to 
be similar. 

The effect of the presence of horizontal boundaries has also been examined, 
although only for F(z)  = tanhx. The effect of decreasing the distance between 
the horizontal plane boundaries at z = & +h (h  is non-dimensionalized with respect 
to the thickness of the transition region at x = 0 )  is first to destabilize the longer 
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wavelengths and then to stabilize all wavelengths; as h takes successively smaller 
values, the neutral curve a t  small cc rises until approximately h = 5 and then 
further decrease of h causes a collapse of the neutral curve towards small wave- 
numbers at  J = 0. The wave-number of the waves which first become unstable 
as the Richardson number decreases (the critical wave-number) is not much 
affected until h is less than 10. The effect on the growth rates of decreasing h is 

Wave-number 
U 

0.40 
0.40 
0.40 
0.40 
0.40 
0.44 
0.44 
0.44 
0.44 
0.44 

Richardson number 
(J) 
0.20 
0.15 
0.10 
0.05 
0.01 
0.20 
0.15 
0.10 
0.05 
0.01 

Growth rate 
@GI)  

0.0446 
0.0885 
0.1264 
0.1602 
0.1848 
0.0474 
0.0896 
0.1270 
0.1608 
0.1855 

TABLE 1. The growth rates for the error function profiles of density 
and velocity, equation (1 1) 

not known, but the general changes suggest that the curve of maximum growth 
rate will be displaced towards the small wave-numbers, the effect becoming 
significant a t  about h = 10. (In dimensional terms this corresponds to 

for the error function profile of the experiments.) 
Hazel has also considered the effect of different length-scales in the profiles 

of velocity and density. R is the ratio of the velocity length-scale to the density 
length-scale in the profiles 

u = Rtanh (z/R), p = 1 - (J /g)  tanhz. 

For 1 < R < 4 2 ,  J is the minimum Richardson number in the flow and the 
neutral curve is the stability boundary. The unstable waves are also stationary, 
and the critical wave-number non-dimensionalized with respect to the density 
length-scale, ccc, is found to correspond to J = g. Near R = 1, 

a, = (0*7/R) - 0.2, 

approximately (Hazel has actually non-dimensionalized with respect to the 
velocity length-scale). We shall show in $2.6 that viscosity has the effect of 
increasing the length-scale of the velocity transition region. At the onset of 
the observed instability in the experiments the value of R is between 1 and 1-38 
and in this range the percentage variation in the critical wave-number from (12) 
may be as much as 35 yo. In the majority of experiments the value of R is between 
1 and 1.1 (corresponding to 13 yo variation) and, in any case, R is not steady 
during the early growth of the waves. The effect of the different length-scales, 

20 F L M  46 
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like that of the boundaries at finite distance and the position of the maximum 
growth-rate curve (figure 2), is to favour wave-numbers which are less than the 
critical wave-number, 0.48, of the error function profiles (1 1) in an infinite fluid. 
The effect of the different length-scale on the growth-rates of unstable waves 
has not been considered in great detail, but Hazel’s available results indicate 
that near R = 1 the changes produced are quite small. 

2.5. The predicted growth curves 

Using the quasi-steady approximation we can now predict the way in which the 
amplitude of a two-dimensional disturbance of a given wave-number will vary 
with time in the accelerating flow. The effects of viscosity and the presence of 
the walls of the apparatus will be neglected. For each wave-number, a, a cubic 
expression in J has been estimated which fits the non-dimensional growth-rates 
of table 1. The dimensional growth-rates are then found by multiplying by the 
reciprocal of the appropriate time scale, [UIL]. Here U is taken as gAtsinI9, to 
which u, given by (4)) tends as z tends to infinity; L is ( V K T ) ~ ,  which measures 
the thickness of the transition region near z = 0. In  the accelerating flow the 
minimum Richardson number, J ,  varies as l/t2 (see (lo)), and its value is sub- 
stituted into the expression for the dimensional growth-rate. For example, for 
the non-dimensional wave-number a = 0.44 (which is near the curve of maximum 
growth-rate of figure 2 for the error function profiles) we find 

(13) 
s6 I ’ -- I d a  - - s 

ads  tan0 S2 5 4  

-(,.,,,------- 0.599 0.069 0.104 

where a is the amplitude of the disturbance, and 

t sin 8[0*248qA]& s =  - 

[TKT cos2 012 . 

(s is chosen so that J = 0*248/s2, and for this wave-number the growth-rate is 
zero for J = 0.248 at s = 1.) 

Integrating (1  3) we find 

where a, is the amplitude of the disturbance when it first begins to grow; that 
is, at J = 0.248. For small values of (s - l),  near marginal stability in the steady 
flow, ( I  3) is a poor approximation as remarked in 4 2.3, for the predicted growth 
rates are very small, but it rapidly improves. For s > 1-48 (14) appears to be a 
very good approximation since the growth rates exceed 1/t by a factor of 112 tan 8 
(which is large for the small I9 of the experiments) or more, and a t  such times the 
amplitude is unlikely to be much affected by the effect of inaccuracies in the 
predictions of growth rate whilst the latter were small. When 8 = 1.48, J = 0.1 14, 
and so for some I9 the approximation will not be valid until the Richardson 
number is quite small. 

Expressionssimilar to (13), (14)maybe found for other wave-numbers. Figure 3 
shows the variation of tan Blog, (ala,,) with 1/2J$, derived for cz = 0.44 froin (14), 
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and for a = 0-40. The term 1/2J* is proportional to t and so figure 3 shows the 
growth of a disturbance with time. The close proximity of the curves for CI = 0.40 
and a = 0-44 indicates that these wave-numbers will grow a t  almost the same 
time. It is therefore to be expected that in the experiments some scatter in the 
wave-numbers which are first observed to grow will be found, since a band of 
wave-numbers grow almost simultaneously. If tan 6 = 0.1 (a value typical of the 
experiments), then 100-fold growth will have occurred when J = 0.077. For 
smaller angles of tilt, 100-fold growth will occur a t  larger values of J .  Also shown 
in figure 3 are some experimental points to which reference will be made in 9 3.2. 

00 09 0 

1.2 1 4  1.6 1.8 2.0 2.2 2.4 

11256 

FIGURE 3. The predicted variation of tan 8 log, (a/a,) with 1/2J+ for cc = 0.40 and cc = 0.44, 
with experimental points for log, (a/a,) = 6 and wave-slope of 0.2. 

Differentiation of (14) (and similar expressions for other values of a) with 
respect to 6 a t  a fixed time t shows that ./ao increases with 0. From the remarks 
in $2.2 it is therefore expected that the waves which will first be observed to 
grow in the experiments will be two-dimensional, unless the initial ‘noise’ dis- 

viscous effects are important when the waves are very small or unless the quasi- 
steady approximation is very poor in the region in which there is doubt about 
its validity. The results presented in I1 indicate that the latter possibility is 
unlikely. 

20-2 
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2.6. The effect of viscosity on the acceleratingJlow 

So far it has been assumed that the accelerating flow is inviscid, and we now 
consider the effect of viscosity. In  I i t  was shown that a Laplace transform 
technique may be used to find the velocity profile in an accelerating flow with 
a constant coefficient of viscosity p. The viscosity is not constant in the ex- 
periments and may vary by as much as 30 yo, but a constant viscosity model will 
give a useful approximation. The details of the calculations are given in the 
appendix. It is shown there that for flows resulting from the density profile (3), 
the ratio of the velocity gradient at z = 0 in a viscous flow to that at z = 0 in 
an inviscid flow is 

n 

0.4 0.8 I .2  
(Ut]KT) 4 

FIGURE 4. The variation Q with ( U t / K T ) i .  

where v = p/p,. The parameter Q may be regarded as the ratio of a length-scale 
characterizing the region of density variation to that characterizing the region 
of velocity variation in a viscous flow. Figure 4 shows the variation of Q with 
( v t / ~ r ) f .  The choice of an error function profile in density is seen to be fortunate 
since initially Q varies very slowly with (vt/Kr)h, a parameter which may be 
identified as the ratio of a viscous length-scale to the diffusion length-scale. 

In presenting the results of the experiments and in comparing them with the 
available theory, the effects of viscosity will be accounted for in three ways. 
Viscosity makes the shear at  z = 0 smaller than that estimated by the inviscid 
theory by a factor Q. The Richardson number of the flow is thus increased by 
l /Q2.  The growth-rates are non-dimensionalized with respect to the shear at  z = 0; 
the shear is decreased and thus the non-dimensional growth-rates estimated 
from the observations should be increased by a factor I/& to make them com- 
parable with those predicted. The effect of viscosity produces different length- 
scales a ~ l  remarked in § 2.4; in an inviscid flow the density and velocity have the 
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same length-scales, but in the viscous flow the velocity has a length-scale greater 
by I/&, and the critical dimensionless wave-numbers are reduced by virtue of 
result ( 12). 

The curves of figure 3 are valid only for strictly inviscid flows. It appears to 
be of little practical value to attempt to correct these, however, particularly as 
the influence of viscosity on the growth-rates of the waves is not precisely known. 

It seems likely that, beyond its influence on the mean velocity profile, viscosity 
has little effect on the conditions at  the onset of instability at  Reynolds numbers 
greater than about 100. Esch (1957) has shown that in an unstratified shear flow 
the neutral curves are not much affected by viscosity at  wave-numbers for which 
the product of the Reynolds number and the non-dimensionalized wave-number 
is greater than 100. Betchov & Szewczyk (1963) have examined the effect of 
viscosity on the growth rates in a hyperbolic tangent shear layer at  Reynolds 
numbers of 40 and less, and their results suggest that at  Reynolds numbers of 
about 100, the growth rates in a viscous flow will not differ significantly from 
those in an inviscid flow. Freymuth (1966) found in his experimental studies of 
a shear layer (again unstratified) that the early stages of the growth of unstable 
waves were not affected by changes in the Reynolds number, Re (based on the 
momentum thickness of the layer) in the range 

61 < Re < 334. 

It is probable that similar results may hold for a stratified shear flow. Without 
modification, the present experiments are not suitable t o  test this conjecture. 

3. Experiments and comparison with theory 
3.1. General description 

The apparatus is a tube with internal dimensions 487.5 em in length, 10 em in 
height and 10.25 em in width. The top and bottom are made of machined alumin- 
ium channel sections and the front and rear sides are of gin. thick perspex. The 
ends are made of aluminium. One end is fitted with inlet and draining tubes and 
a plate which arrests the inflow to reduce mixing in filling. The other end has 
a tapered slot fitted to it which leads into a tube, and this is arranged to allow the 
removal of bubbles of air when the tube is being filled. The tube is braced by a 
support system to prevent sagging and the sag along the length of the tube in 
the experiments is less than 3mm. It is free to pivot about a horizontal axis 
which is at right angles to the tube and which is at  a distance of 12.5 ern below 
its centre. 

The water used to fill the tube is left to stand for some time, usually 48 h, to 
remove air bubbles, before it is run into the tube from a constant head apparatus. 
The tube is filled in an inclined position at  about 45" t o  the horizontal. The fresh 
water is first run in from the lower end and the brine solution (coloured with 
potassium permanganate in most of the experiments) is slowly run in under the 
water, forcing the water up the tube and eventually all the air out of the tube 
through the upper end-plate. Filling is continued until the interface between 
the water and the brine, which can be seen either because the brine is dyed or 
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through the refraction effects associated with the interface, reaches the centre of 
the tube. The interface is usually quite clear and sharp if care is taken when the 
first brine is introduced. Filling usually takes about 1 h and the thickness of 
the interface, judged by eye, is about 1 ern when filling is complete. Taps at the 
ends are then closed and the tube is slowly tilted by hand into a horizontal 
position. With experience this can be done in about 8 min with very little sign 
of mixing. The area of the interface is considerably increased in this tilting (by 
a factor of about 2 2 ) ,  and the density gradients a t  the interface are considerably 
increased. 

The tube is left in a horizontal position for a time to allow diffusion to occur at  
the interface. During this time photographs are taken of a bar inclined at  about 
45" to the horizontal which is viewed through the tank. The gradients of re- 
fractive index at the interface produce a distorted image of the rule (Mowbray 
1966) and the photographs are used to obtain an estimate of the equivalent 
total diffusion time, 7, the time which elapses between the tube reaching a 
horizontal position and the experiment being made plus a correction representing 
the time necessary for diffusion to produce the gradients at the interface at  the 
moment when the tube reaches the horizontal position. The correction (usually 
about 14min but sometimes larger) is obtained by plotting the square root of 
the length of the rod which is distorted by interface, against time; the negative 
intercept on the time axis is taken as the correction. This method is only approxi- 
mate, but for most experiments the correction is small compared t o  7, and, as 7 
itself appears in the theory to some small fractional power, the errors are not 
serious. 

When the time to  make the experiment arrives, two cameras are started and 
a second or so later the tube is rapidly tilted through a small angle, 8. The time 
taken to tilt the tube is usually between 4 and +see. A 35mm Nikon camera, 
fitted with a motor drive t o  take about 3 frames/sec, photographs about 140 em 
of the central length of the tube, and the photographs are used to determine the 
wavelength of the eventual instability. The second camera is a 16mm Bolex 
which is operated at  between 40 and 78 frames/sec, depending on the expected 
rapidity of the wave growth. (The speeds were checked by filming a stop watch.) 
The colour cine film shows about 80 ern of the tube and is used to record the time 
at which the tube is tilted and the subsequent growth of instability. 

In  the majority of the experiments, A, the fractional density difference between 
the fluids, was about 0.085. In  experiments made with smaller density differences 
the instability was found to occur only after a time at  which viscosity was 
important (& is appreciably less than l), unless large tilt angles were used. These 
were avoided so that the time to tilt the tube was kept small. The time of events 
in the accelerating flow, t ,  was measured as the time from the moment at which 
the tube reached its maximum inclination plus half the time taken to tilt the tube. 

The growth of the instability, which looks a t  one stage (c) very like the 
decorative patterns sometimes found on Roman mosaic pavements, is shown in 
figure 1 (plate 1). The transition from waves into spiral rolls and then into tur- 
bulence has been described already in I and 111. The growth is remarkably 
regular and well organized; patches of about five waves or more can frequently 
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be seen in which a very regular wavelength is maintained and in which the waves 
grow at the same time. Instability occurs a t  about the same time all along the 
central portion of the tube, indicating a very rapid growth at this time. In  the 
experiments with two layers of equal depth the instability appears to be 
stationary. The two-dimensional nature of the instability is demonstrated on 
figure 5 (plate 2), which are negatives taken from the cine film of instability in 
a tube made entirely of perspex which was described in I. A thin layer of dye 
(this appears as white streaks) has been injected a t  the interface. The lower part 
of the photographs show the tube viewed directly from the side and the upper 
part shows a view from above which is reflected through a mirror. The photo- 
graphs demonstrate the way in which fluid near the interface is redistributed as 
the waves grow (see also 111). There is a clear similarity between this instability 
and that observed by Woods (1968, see figure 9). 

Precise measurements of the wave amplitude during the early stages of growth 
are not possible, for the dye in the lower, brine, layer has diffused about as much 
as the brine and the interface is not sharp. However, the interface soon becomes 
very sharp because of the redistribution of fluid at the interface, and, at wave 
slopes greater than about 0.2, it is easy to measure the wave amplitude from the 
photographs. The wave slope is defined here as half the total crest-to-trough 
amplitude of the disturbance, times the wave-number. Wave slopes of 0.2 are the 
first at which it is possible to estimate the growth rate of the disturbance. 

The molecular diffusivity of sodium chloride in water, K ,  is taken as 

1-40 x cm2 sec-l 

in the estimation of the diffusion at  the interface in the experiments and the 
kinematic viscosity of the fluids, u, is taken as 1.00 x cm2 sec-l. No account of 
the variations arising from either temperature changes or differing concentra- 
tions of brine have been made. 

3.2. The early stages of instability 
It is t o  be expected on theoretical grounds ( 5  2.5) that the minimum Richardson 
number in the flow, J ,  will be much less than the critical value of 0.25, estimated 
for steady flows, when instability is first observed in the accelerating flow of the 
experiments. This is indeed found. Some effort was made to measure the time t ,  
and thus to estimate J ,  a t  the onset of instability, but the precise moment of 
instability was thought to be rather subjective and, instead, the values of J 
at wave slopes of 0.2 have been estimated and are plotted in figure 3 with a choice 
of a/ao = 403 (=  exp B), to give a good fit. (The onset of instability was first 
observed at values of J about 20 yo larger.) The corresponding slope of the pre- 
sumed initial disturbance at  J = 0.25 is approximately 5 x which does not 
seem to give an unreasonable estimate for the probable initial noise-level in the 
tube. This noise may arise in a number of ways. Brownian movement, the 
vibration in the fluid and structures of the tube caused by the initial acceleration 
and deceleration whilst the tube is being tilted, vibrations of the floor and 
vibrations in the air surrounding the tube, may all contribute. Without knowledge 
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of the initial disturbances, the selection of a/uo cannot be justified. The re- 
peatability of the experiments which was remarked on in I seems, however, to 
support the assumption that the noise level is fairly constant from one experiment 
to another. Although the wave slope of 0.2 is probably beyond the range of 
linear theory (and the redistribution of fluid in the interface suggests this) the 
general fit of the experimental points to the theoretical is encouraging. The values 
of J (and therefore s, see 5 2.5) axe such that the quasi-steady approximation is 
a good approximation to the theoretical growth rates, we therefore compare the 
observed growth rates with those predicted by the approximation. 
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FIGURE 6. The observed non-dimensional growth rates, mi, as functions of the minimum 
Richardson number, J ,  when the slope of the disturbance is 0.2. The dotted line indicates 
the predicted growth rates for infinitesimal disturbances of wave-number ct = 0.44. 

The growth rates of the instability, ac,, non-dimensionalized with respect to 
the shear at the interface at  wave slopes of 0.2, are plotted against J in figure 6. 
The growth rates have been found from the cini: film by measuring the crest-to- 
trough amplitudes of individual waves, plotting their variation with time and 
estimating the growth rates from the plotted curves. The dotted line in figure 6 
is the theoretical curve of the growth rates of infinitesimal disturbances of wave- 
number a = 0.44 computed by Hazel for the error function profile (table 1 ) and 
which have been assumed in the quasi-steady approximation. There is consider- 
able scatter in the experimental points arising both from the method of measuring 
the growth rates and from real variations between individual waves. In general, 
the observed growth rates are somewhat less than predicted, about 25 less 
on average, but in view of the number of effects (viscosity, finite amplitude, etc.) 
which might contribute to a difference between the observations and predictions, 
the agreement is rather better than might be expected. 
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The observations are not sufficiently numerous to decide whether any variation 
with Reynolds number is present. The Reynolds number at the interface based 
on the velocity difference and the length scale [ Z ( ~ K T ) * / & ]  of the velocity transi- 
tion region at the interface, at wave slopes of 0.2, ranges between 490 and 5000, 
which is higher than the values at  which viscosity seems to play a significant 
part in the early growth of disturbances in homogeneous shear flows. At the 
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FIGURE 8. The variation of wavelength, A, with the thickness of the interface ( ~ K T ) . ” .  

The vertical lines indicate the standard deviation of the observed points, and the dotted 
lines indicate the non-dimensional wave-numbers a = 0.40 and a = 0.44. 

same wave slopes, 0.2, the Reynolds number at  the walls of the tube, based on 
the largest velocity in the tube (gAtsin8) and the length-scale, (mt )Q ,  of thc 
viscous boundary layer, ranges from 320 to 1400. The lower end of the range is 
such that Tollmien-Schlichting instabilities are not expected. A t  the upper end 
Tollmien-Schlichting instabilities are possible although their growth rate is not 
large. No sign of their presence in the experiments has been noticed. 

The wavelength of the instability is not found to change during the growth 
from the smallest wave slopes which can be observed (about 0.01) up to the 
onset of turbulence or pairing (as described in I and shown in figure 5 in this 
paper) in which neighbouring rolls begin to wind around each other at  wave 
slopes of order unity. It is therefore possible to select photographs of quite large 
amplitude disturbances for analysis of wavelengths. Bigure 7 (plate 3) shows 
photographs of the disturbances which develop in a number of experiments in 
which the diffusion time T has been varied. The wavelength h of the instability 
increases as r increases, and figure 8 shows the variation of A with the length-scale 
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of the interface, ( n K r ) * .  The mean wave-number, a non-dimensionalized with 
( ~ T K T ) ~ ,  in the experiments is 0.41 with standard deviation of 0.05. This is less 
than the critical wave-number, 0.48, calculated for the error function profiles 
and is also somewhat less than the wave-numbers near the computed curve of 
maximum growth rate. The small values of J when instability is observed suggest 
that a wave-number of 0-44 should be the largest. However, the other effects 
considered in 8 2 tend to reduce the wave-number of the largest wave, and the 
observed value is well within the range which might be expected from the 
t,heoretical estimates. The large scatter in wave-numbers, indicated by the 
vertical lines of figure 7, has also been predicted. The theoretical results suggest 
that the instability found in the experiments made with very diffuse interfaces 
(the largest 7) may be affected by the presence of the tube boundaries, but the 
scatter in the observed wave-numbers makes it uncertain whether this is so. 

3.3. The growth to large amplitude 

The growth rates increase between wave slopes of 0.2 and 0.4 as the wave evolves 
into a spiral structure (see 111)) but between 0-4 and 1.2 (the slope at which the 
smooth outline of the spiral is first broken by irregular disturbances of scales 
small compared withthe wavelength), the rate of change of wave amplitude with 
time is remarkably constant. Figure 9 shows the growth rates at  wave slopes of 
0.8. As in figure 6, the scatter of points is considerable. The growth rates are 
about half those measured at slopes of 0.2. 

As the wave and the spiral structure grow, the phase difference between the 
crest and trough, initially 180" for the very small amplitude waves, decreases. 
The decrease appears to be quite irregular in the early stages, but between wave 
slopes of 0.4 and 1.2 the rate of change of phase is remarkably constant. At  0.4 
the phase difference is about go", but when the first irregularities appear in the 
outline of the spiral structure the crest and trough are almost exactly in phase. 
We have thus a spiral structure which grows in total amplitude at  a constant 
rate and in which the phase changes uniformly. 

The fluid within the spiral when the outline is f i s t  broken has an approximately 
elliptical shape with the minor axis vertical, and the areas of these regions have 
been measured from the cine film. If this fluid were spread along the tube the 
half thickness of the layer so formed would be about 1*25(n~r)k, with values 
nearer ( ~ K T ) &  for the longest waves observed and near 1 * 7 5 ( ~ ~ ~ ) *  for the shortest. 
(The shorter wavelengths have generally rather larger wave-slopes ( 1.4) when 
the breakdown occurs, and it is probable that the tube boundaries affect the 
longer waves when their amplitude is large.) Since the density at a height 
I = 1 - 2 5 ( m ~ ) $  is po( 1 - 0.883A) (from (3)), much of the fluid at the interface is 
involved in the spirals, and mixed as the spirals themselves become unstable. 

The most regular spiral structures have been observed in the shallow (3cm 
deep) tank used for the experiments described in I. Some attempts have been 
made to measure the distribution of angular velocity within the spirals in order 
to estimate the stability of the distribution, but these have not been very 
satisfactory. In growing to wave-slopes of about 1.2, the interface near the 
centre of the spiral has rotated through about 377 radians in the cases in which it 
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can still be distinguished. It is most frequently observed that the structure in 
the spirals becomes indistinct at quite an early stage in their growth and this is 
possibly the result of gravitational instabilities. If two inviscid fluids are super- 
imposed with the heavier (pz)  above the lower ( p l )  and with fractional density 
difference A = (pz -p l ) / (p l+pz ) ,  the growth rate of unstable disturbances of 
wave-number k is (glcA)4 (Taylor 1950). If k = 2ncm-1 and A = 0.08, then the 
growth rate is about 22sec-1 and in gsec (a time typical of the growth of the 
spirals) the disturbance will have grown in magnitude by 6 x lo4 times. Similar 
growth rates can be obtained if viscosity is included (see Chandrasekhar 1961, 
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FIGURE 9. The observed non-dimensional growth rates, ac,, RS functions of the minimum 
Richmdson number, J ,  when the slope of the disturbance is 0.8. 

ch. 10). The edges of the spirals and the interface between them is frequently 
disturbed by an instability which resembles the initial instability but on a smaller 
scale, and small-scale spirals are formed. 

Some experiments have been made with a number of layers, and figures 10-12 
(plates 4-6) show the onset of instability for 3 layers, 5 layers and 7 layers 
respectively. The initial density distributions are given in the figure captions. 
In  the case of the 3- and &layer experiments, instability is first seen t o  grow at 
the upper interface and the resulting disturbances move with about the mean 
speed of the fluid at  that level, and only later is the lower fluid involved in the 
mixing. In both cases the instability occurs first at  the interface where the 
density jump is greatest and therefore where the Richardson number is least. 
A variety of length scales can also be seen to be generated in this process. Some 
of the smaller spirals which grow on the larger (see, for example, figure 10(h))  
may be the cause of the large reflexions from such structures observed by radar 
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in the clear atmosphere (see, for example, Hicks & Angel1 1968; Browning & 
Watkins 1970). The 7-layer experiment, figure 12, has become unstable in a 
similar fashion to the 2-layer experiments, and the distortion of the bands of 
dye show clearly the way in which fluid is transported and redistributed in the 
spiral growth and the subsequent ‘cats-eye’ type pattern. The small columns of 
dyed fluid which are seen to emerge from the lower edge of the dyed band 
(figure 11 ( f ) )  possibly result from an overshoot of gravitationally unstable fluid 
in the break-up of the spiral-like flow. 

3.4. The resulting turbulence 

The onset of small-scale irregularites in the smooth outline of the spiral pattern 
are first observed at  wave-slopes between about 1.2 and 1-4, and these are followed 
by a transition which results in the production of a layer of mixed fluid bounded 
by an irregular boundary. This layer appears to be turbulent. If the tilt of the 
tube is maintained, the turbulent layer rapidly spreads to fill the whole depth 
of the tube. Some experiments have been made, however, in which the tube is 
tilted until instability just begins, and the tube is then rapidly returned to the 
horizontal position. Provided that the diffusion time is small, so that the inter- 
face is thin and the wavelength of the instability small, the resulting turbulent 
layer does not fill the tube, and it is possible to examine its growth and decay 
in conditions in which presence of the tube boundaries may not be significant. 
It is found that by shining the almost collimated beam of light from a slide 
projector through the tank on to a screen of tracing paper much of the fine 
structure within and at  the boundaries of the turbulent layer is revealed. (This 
is a simple shadow-graph.) 

A few experiments have been made with values of A equal to about 0.04, r equal 
to about 28min and, approximately, sin8 = 0.10 during the time the tube is 
tilted. The experiments have not been repeated over a wider range of conditions 
since the influence of the tube boundaries is uncertain. Nevertheless they seem 
to be of sufficient interest to merit the inclusion of a general description at  this 
stage. Figure 13 (plate 7) shows (in negative from the 16 mm colour cine film) 
the development of the mixed layer, and figure 14 shows the variation of layer 
thickness with time measured from the onset of small-scale irregularities in the 
flow at wave slopes of about 1.3. The half thickness of the layer, D, has been 
iion-dimensionalized with respect to the length U$[gA, where U, is the estimated 
fluid speed outside the layer when the tube is returned to the horizontal position; 
U, = gat sin 0, where t equals the time for which the tube was tilted. This non- 
dimensionalized thickness is equal to the layer Richardson number, Ri,. The 
time, T, has been non-dimensionalized with respect to U,/gA. 

The tube becomes horizontal at, or about, T = 0. Thereafter the mixed layer 
grows at  almost a constant rate with dR,,/dT = 0.1, until Ri, is about 0.32, 
when the rate decreases a little. The value Ri, = 0.40 is reached at about T = 5 ,  
after which there is little further growth of the layer. The layer thickness is 
then about 6 ern and it thus fills a large proportion of the tube height (10 em). 
During the early stages of growth the edge of the turbulent region is marked 
mainly by rounded billows (figure 13 (d)-(g)) which at first have a largest scale 
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similar to the scale of the spiral rolls; evidence of the roll-like structure is lost 
a t  about R,, = 0.2 and the scale of the billows is then reduced. A transition in 
the nature of the edge of the layer occurs at  about RiL = 0.37, and instead of 
rounded billows a striated structure becomes more and more dominant (figure 
13 (i) ,  (j)). The Reynolds number at  the walls of the tube (Uo(n-t/v)i, where t is 
the time elapsed since the tube was first tilted) is equal to 1000 when T is about 8. 

0'5 t 

I I I I 

5 10 15 
Time (2') 

FIGURE 14. The variation of the non-dimensional thickness of the layer resulting from 
instability in the shear flow (or the layer Richardson number RtL) with non-dimensional 
time T, at the values of A, T and sin 0 given in $3.4. 

At about T = 10 the boundary is almost entirely marked by lines and striations, 
and at about this time the first striations or layers within the turbulent layer are 
seen (figure 13(k)).  Until this time there is little notable structure within the 
layer. What there is consists of rather round and indistinct shadows which move 
as if in a uniform shear. The striations within the layer become stronger and 
more numerous and completely dominate the structure at  about T = 16. They 
are slightly inclined to the horizontal as shown in figure 13 (m),  (n). Their presence 
appears to indicate the collapse of the verticaJ motions in the turbulence and 
the establishment of a fine-scale density structure which moves with approxi- 
mately uniform shear, Uo/D, in the layer. The inclination of the strong streaks 
(figure 13(m), (n)) is consistent with the assumption that they are the sheared 
remna,nts of individual rolls which in mixing have arrived at  slightly different 
densities. The influence of the ends of the tube becomes apparent at about T = 18 
and further unimpeded development cannot be followed. The construction of a 
larger tube may allow further detailed study of the turbulent layer and its 
collapse, and an investigation of energy exchanges in the turbulent motions. 

4. Final remarks 
We have discussed a simple experiment in which instability occurs in a 

stratified free-shear flow in which both the density and velocity profiles have 
an error function form. The agreement between observations and theory similar 
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to that  first developed by Taylor (1931) and Goldstein (1931) suggests that the 
instability arises from the so-called Kelvin-Helmholtz instability. The growth 
of the instability from wave-slopes of 0.2 until the onset of the collapse of the 
resulting turbulence have been described in some detail. 

The flow in the experiments and those which occur in nature are not steady. 
The reduction of the minimum Richardson number, J ,  to values well below the 
critical value necessary for instability in steady flows before instability becomes 
noticeable in the accelerating flows, is a remarkable feature of the experiments, 
and care should be taken to allow sufficient time for the growth of disturbances 
when making estimates of the conditions for instability in naturally occurring 
non-steady flows. 

I am grateful for the assistance of several students who have helped to  make 
the experiments during their university vacations, and to the many staff a t  
N.I.O. who have helped in making the apparatus or in taking photographs. A 
film of these experiments and those reported in I1 is being made, and anyone 
interested in obtaining a copy should write to the author for details. 

Appendix. The effect of viscosity on the accelerating flow 
It was shown in I that the Laplace transform of the velocity in the tilted tube, 

Z(z, s) = e-stu(z ,  t )  dt ,  1: 
U = Rsinhrz+Bcoshrz+C+- sin ' j : p ( y )  sinh r (z  - y) dy,  

is given by 

(A 1) 
Psr 

where ,u is the coefficient of viscosity, supposed constant, v = PIPo, r = (s/v)t 
and A ,  B and C are functions of s to be determined from the boundary conditions 
and the condition 

uaz = 0. 

(A factor l / r  was omitted from the last term in the form of (A 1)  published in I.)  
We are here concerned with the flow near z = 0, in the shear layer, and accord- 

ingly we let p = po( 1 - Af(z)) and u = gAf(z) t sin 0 a t  z = & &I7 and assume 
that A < 1, andf(z) = -f( - z )  is of order unity, as in 5 2.1. This choice of u, will 
remove the effects of t,he wall boundary layers when we ta.ke the limit H + co. 
Imposing the conditions (A 2) and ii = gAf( + H ) / s ~  a t  x = & $H on (A 1) we 
find that 

and 

where 

- gAsinO u =  - { [ f ( & H )  +?Y!(iH)] sinh ( rz)  - rYp(z) sinh ( + r H ) )  
s2 sinh ( 4 r H )  

au gAsinB _ -  - {r f (&H) + r2'Y(+-H)) a t  z = 0, 
az s2 sinh ( $ r H )  

Y(z) = /zf(y)s inhr(z-~)dy.  0 

If now f ( x )  = erfpz, 
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corresponding to the experimental conditions, we find that, on substitution, 

a-ii gAsin 8 (;)* 
- (2 = 0) -+ ___ 
ax S2 

[ 1 - erf (r/2/3)] exp (s/4v,d2) as H + m. 

This expression may be inverted by using the tables of integral transform 
(Erdelyi et al. 1954, p. 267 (15)) and re-written using formula for the hyper- 
geometric function (Abramowitz & Stegun 1965, p. 556; 15.1.13) to give in the 
limit H -+ m au 4pgAt sin 8 

ax 
- (2 = 0) = 

7 r q  1 + (1 + 4Vtp)q. 

Now the velocity gradient a t  x = 0 in an inviscid flow with density profile given 

by (3) is au gAt sin 8 - ( z  = 0) = ___ 

and so, putting B = 1/2(~7)3, we find that the ratio of the shear in a viscous flow 
t o  t,hat in an inviscid flow is 

ax (7TK7)3 ' 

n 

(A 5) 
z 

fJ = { 1 + [l + (4/n) ( V t / K 7 ) ] 3 ) '  
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FIGURE 1. The growth of the instability at  the interface of layers of water and brine 
coloured with potassium permanganate of equal depth and fractional density differencc 
A = 7.95 x g/cc. Diffusion has occurred for a time 7 = 30 min before the tubo was 
tilted through 4.4". The first photograph is taken at 3.35sec after the tube has been 
tilted and the time interval between successive frames is 0.35 see. The rule is 45 cm long. 
The flow in this and other photographs, except for that of figure 13, is to the right a t  
the top of the tube and to the left at  the bottom. 

THORPE (Facing p .  320) 
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FIGURE 5. Instability at the interface between water and brine with A = 2.90 x 10F g/cc 
having a layer of dye at the interface. The photographs are taken from a 16 i n i n  cin6 
film and are in negative so that thc dyc appcars whitc. The upper pert of each shows 
the plan view as seen through a mirror arranged a t  45" to the horizontal and the lower 
part is a dircct view. The tube has an internal cross-section of 3 x 10 em. Thc first photo- 
graph is taken at 2.50 see after tube has been tilted through 8.2', and sitbscqucnt photo- 
graphs are trtkcn at  0.20 see intervals. 

THORPE 
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FIGURE 7. The variation of wavelength with diffusion time. The corrected diffusion time 
of each experiment in minutes is shown on tho right. (The other labels are for use in 
identifying different experiments.) The rule is 45 cm long. 

THORPE 
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FIGURE 10. Instability in a three-layer experiment with densities 1.000,1.092and 1.172g/cc, 
the central dyed layer having an initial thickness of 1.3 om. Diffusion between the layers 
lasted for about 40 min before the tube was tilted through 5.6". The first photograph was 
taken after 3.87 see and those following at  intervals of 0.44 see. 

THORPE 



c
 

ha
 g cn
 

F
IG

U
R

E
 

11
. I

n
st

ab
il

it
y

 i
n

 a
 f

iv
e-

la
y
er

 e
x
p
er

im
en

t 
w

it
h
 d

en
si

ti
es

 1
.0

01
, 

1.
04

6,
 1

.0
85

, 
1.

12
6 

an
d

 1
-1

64
 g

/c
c,

 t
h

c
 t

h
re

e 
m

id
d
le

 
la

y
er

s 
h

av
in

g
 i

n
it

ia
l 

d
ep

th
s 

of
 1

.0
2 

om
. 

D
if

fu
si

on
 b

et
w

ee
n
 t

h
e
 l

ay
er

s 
la

st
ed

 
fo

r 
ab

o
u

t 
25

 m
in

 b
ef

o
re

 t
h

e 
tu

b
e 

w
as

 t
il

te
d

 
th

ro
u

g
h

 5
.6

”.
 T

h
e 

fi
rs

t 
p

h
o

to
g

ra
p
h
 w

as
 t

ak
en

 a
ft

er
 5

.1
3 

se
c 

an
d

 t
h
o
se

 f
o
ll

o
w

in
g
 a

t 
in

te
rv

al
s 

of
 0

.4
2 

se
e.

 



Journal of Fluid Mechanics, Vol. 46, part 2 Plate 6 

THORPE 



Journal of Fluid Mechanics, Vol. 46, part 2 Plate 7 

THORPE 


